天堂网www,免费追剧大全在线观看电视剧,97久久精品无码一区二区欧美人 ,日本丰满少妇高潮呻吟

您當前的位置:檢測資訊 > 科研開發

磷酸鐵鋰VS三元! 材料及電池對比分析

嘉峪檢測網        2022-07-22 00:26

近年來,磷酸鐵鋰和三元技術路線之爭從未停歇,本文結合兩種正極材料及電池的特點,對它們在不同領域的應用進行了對比分析。

 

磷酸鐵鋰材料及電池

 

三維空間網狀橄欖石結構的LiFePO4,形成了一維的Li+傳輸通道,限制了Li+的擴散;同時,八面體FeO6共頂相連,使其電子電導率較低,在大倍率放電時極化較大。為解決LiFePO4材料較低的鋰離子擴散和電子電導率,當前技術主要通過納米化、碳包覆、摻雜等手段加以改善。LiFePO4材料充放電過程主要在LiFePO4及 FePO4兩相之間相互轉變,體積變化率小,使得材料極其穩定,因而磷酸鐵鋰材料及電池的安全和穩定性毋庸置疑。

 

磷酸鐵鋰VS三元! 材料及電池對比分析

圖 1 磷酸鐵鋰材料的結構模型圖

 

磷酸鐵鋰電池主要有以下特點:

 

(1) 磷酸鐵鋰電池循環性能極好,能量型電池循環壽命可長達3000~4000次,倍率型電池的循環甚至可達上萬次;

 

(2) 磷酸鐵鋰電池具有優異的安全性能,即使在高溫下仍可保持較穩定的結構,使得磷酸鐵鋰電池安全可靠,甚至在電池出現變形損壞時也不會出現冒煙、起火等安全事故.

 

另一方面,磷酸鐵鋰原料資源較為豐富,極大地降低了材料及電池的使用成本,同時由于鐵磷元素對環境友好,磷酸鐵鋰材料及電池對環境無污染。但是,LiFePO4材料的結構特性決定材料具有較低的離子和電子電導率,而且隨著溫度降低,電子轉移阻抗和電荷遷移阻抗均迅速增加,導致其電池低溫性能較差。

 

三元材料及電池

 

自Li(NixCoyMn1-x-y )O2材料被首次報道之后,引起研究者的高度關注。為減少Co漲價帶來的成本壓力,國內外已開展了三元材料低Co甚至無Co化的研究,此類材料可能成為未來的主流正極材料。

 

Li(NixCoyMn1-x-y )O2與LiCoO2結構有相似之處。以NCM111型三元材料為例,其中Li+位于結構中3a位置,Ni、Mn、Co隨機分布在3b的位置,晶格氧占據6c位置。其中過渡金屬層結構由Ni、Mn、Co組成,且由6個晶格氧包圍形成MO6(M=Ni、Co或Mn)八面體結構,而鋰離子嵌入MO6層之間。在充放電過程中,鋰離子在MO6層間結構中脫嵌,參與電化學反應的電對分別為Ni2+/Ni3+、Ni3+/Ni4+和Co3+/Co4+,而Mn元素為電化學惰性,不貢獻電化學容量。

 

磷酸鐵鋰VS三元! 材料及電池對比分析

圖 2 不存在 Li/Ni 混排(a)和存在 Li/Ni 混排(b)的三元材料的結構圖

 

按Ni含量比例可將三元材料和電池分為常規型和高鎳型。隨著Ni含量的提高,可脫嵌鋰增加,材料容量及電池能量密度提高,因此高鎳型三元材料和電池是當前研究的熱點并充滿挑戰。

 

首先,由于Ni2+半徑與Li+半徑非常接近,隨著Ni含量提高,高鎳三元材料在高溫燒結制備時產生Li/Ni混排概率急劇加大,而進入MO6層的鋰脫嵌較為困難,阻礙 Li+傳輸能力,導致比容量降低及循環性能降低并很難逆轉。

 

其次,隨著Ni含量的提高,材料中Ni3+的比例也隨之提高,而Ni3+非常不穩定,暴露在空氣中非常容易與空氣中的水分和CO2反應生成表面殘堿,導致三元材料容量和循環性能損失。除此之外,過多的表面殘堿會使得三元電池產氣嚴重,影響其循環性能、安全性能等。

 

第三,高價Ni元素還具有較高的催化活性和氧化性,導致電解液分解也引起電池產氣。為解決上述難題,前驅體定制化、燒結工藝個性化、離子摻雜、表面包覆改性、濕法處理及生產環境管控成為三元材料廠家的普遍選擇。

 

對于三元電池來說,其性能特點主要有較高的材料質量比容量、質量和體積比能量,較好的倍率性能和低溫性能,但由于結構的穩定、鎳鈷資源的稀缺等,其循環性能較好、安全性能一般,成本較高。

 

兩種材料及電池對比分析

 

1、能量密度

 

與磷酸鐵鋰材料相比,三元材料的放電比容量較高,且平均電壓也更高,因此三元電池的質量比能量一般較磷酸鐵鋰高。此外,由于磷酸鐵鋰材料的真密度偏低、顆粒較小和碳包覆等原因,其極片壓實密度約為2.3~2.4 g/cm3,而三元極片的壓實密度可以達到3.3~3.5 g/cm3,因此三元材料及電池的體積比能量也遠高于磷酸鐵鋰。

 

2、安全性

 

從安全性角度來講,磷酸鐵鋰材料主體結構為PO4,其鍵能遠高于三元材料MO6八面體的M-O鍵能,滿電態的磷酸鐵鋰材料的熱分解溫度為700 ℃左右,而相應的三元材料的熱分解溫度為200~300 ℃,因此磷酸鐵鋰材料更加安全。從電池角度來對比,磷酸鐵鋰電池可以通過全部的安全測試,而三元電池的針刺和過充等測試并不能輕易通過,需要從結構件及電池設計端等進行改進。

 

3、功率性能

 

磷酸鐵鋰材料Li+的活化能只有0.3~0.5 eV,導致其 Li+擴散系數在10-15~10-12 cm2/s 數量級。極低的電子電導率和鋰離子擴散系數導致了LFP功率性能不佳。而三元材料的Li+擴散系數約為10-12~10-10 cm2/s,并且電子電導率高,因此三元電池具有更好的功率性能。

 

4、溫度適用性

 

受磷酸鐵鋰材料較低的電子電導率與離子電導率的影響,導致磷酸鐵鋰電池低溫性能較差。磷酸鐵鋰電池-20 ℃放電與常溫相比,容量保持率僅為60%左右,而同體系的三元電池可達到70%以上。

 

5、成本及環境因素

 

三元材料含有Ni、Co等稀缺金屬,其成本較磷酸鐵鋰高。隨著材料及電池技術水平的提升,三元及磷酸鐵鋰電池的成本都大幅下降,目前三元電池市場售價高于磷酸鐵鋰電池。同時,相較于對環境友好的Fe、P元素,三元材料及電池中的Ni、Co元素對環境污染較大。結合上述因素,三元材料及電池的環境管控和廢舊回收需求更加迫切。

 

表 1 磷酸鐵鋰材料和三元材料綜合對比分析

磷酸鐵鋰VS三元! 材料及電池對比分析

 

從表 1 可以看出,磷酸鐵鋰材料與三元材料各有優勢,這也決定了兩種材料各自的應用領域。

 

參考:汪偉偉, 丁楚雄, 高玉仙,等. 磷酸鐵鋰及三元電池在不同領域的應用[J]. 電源技術, 2020, 44(9):4.

 

分享到:

來源:鋰電聯盟會長

主站蜘蛛池模板: 宝山区| 嘉定区| 隆子县| 石渠县| 辽阳县| 友谊县| 绥阳县| 丹阳市| 泰和县| 鹤峰县| 洱源县| 高碑店市| 中方县| 贵阳市| 榆中县| 霍州市| 德江县| 铜鼓县| 阜宁县| 肥乡县| 高平市| 肇州县| 论坛| 昌江| 抚宁县| 贵德县| 资中县| 井冈山市| 武城县| 舒兰市| 吉木乃县| 兴海县| 胶州市| 磐石市| 平远县| 依兰县| 称多县| 云和县| 绥化市| 潼关县| 寻乌县|